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1. Introduction

Recently, three-dimensional supersymmetric Chern-Simons theories have attracted great

interest as theories for multiple M2-branes in various backgrounds. This was triggered

by the proposal of N = 8 interacting Chern-Simons theories by Bagger, Lambert [1 – 3],

and Gusstavson [4, 5]. Their model (BLG model) is based on Lie 3-algebra, and the

action includes structure constants, which satisfy the so-called fundamental identity. This

model, however, has not succeeded in describing an arbitrary number of M2-branes in

uncompactified flat background, due to the fact that the fundamental identity is very

restrictive and it admits the only one non-trivial finite-dimensional algebra with a positive

definite metric [6, 7]. The resulting theory is conjectured to describe two M2-branes on a

certain orbifold [8, 9].

Aharony et al. proposed alternative model in [10], based on the recent progress in

N = 4 Chern-Simons theories [11, 12]. Their model (ABJM model) is U(N) × U(N)

Chern-Simons gauge theory at level (k,−k) with bi-fundamental matter fields. The model

describes N M2-branes in the C4/Zk orbifold background. Although only N = 6 supersym-

metry is manifest in the model, the supersymmetry is expected somehow to be enhanced

to N = 8 when k = 1, 2.

After the proposal of the ABJM model, some generalizations have been studied. Orb-

ifolds of the ABJM model are discussed in [13 – 15]. In [14], a certain class of N = 3 quiver

Chern-Simons theories with non-toric moduli spaces are also studied based on the brane

construction, and the hyper-Kähler toric structure of the moduli spaces is clarified in [16].

The moduli spaces of other superconformal Chern-Simons theories are studied in [17 – 21].
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N = 2 Chern-Simons theories with general quiver structure are studied in [22], and it

is shown how the gauge symmetries and D-term conditions are modified compared to the

case of four-dimensional N = 1 gauge theories described by the same quiver diagrams. It

is also found that the moduli spaces of such theories generically include a baryonic branch.

In the case of four-dimensional N = 1 supersymmetric gauge theories, brane tilings [23 –

25] are convenient tools to establish the relation between gauge theories and their moduli

spaces, for a class of theories whose moduli spaces are toric Calabi-Yau 3-folds. See [26, 27]

for review of brane tilings. Brane tilings are expected to be convenient for three-dimensional

Chern-Simons theory, too. N = 2 quiver Chern-Simons theories described by brane tilings

are studied in [28], and it is shown that the moduli space of the theories are toric Calabi-Yau

4-folds, and the Hilbert series is computed for some examples.

In this paper we consider the class of N = 2 quiver Chern-Simons theories described by

brane tilings. Our aim is to establish the relation between brane tilings and brane crystals.

Brane crystals are three-dimensional graphs proposed in [29 – 31] as diagrams describing

three-dimensional superconformal field theories and the structure of their moduli spaces.

We first give a simple prescription to obtain toric data of the moduli space from a tiling,

and explain how we can construct a crystal describing the same moduli space.

This paper is organized as follows. In the next section, we explain the relation between

brane tilings and quiver Chern-Simons theories. In section 3 we review how gauge sym-

metries of Chern-Simons theories are broken due to the existence of Chern-Simons terms

following [22]. In section 4, we define gauge invariant operators which parameterize the

moduli spaces of Chern-Simons theories. In section 5 we give a simple prescription to

obtain the toric data of the moduli spaces by using tilings. This section has some overlap

with [32]. The relation between brane tilings and brane crystals are discussed in 6. The

last section is devoted to conclusions.

2. Tilings and Chern-Simons theories

We consider three-dimensional N = 2 quiver Chern-Simons theories described by brane

tilings, which are also studied in [28].

A brane tiling is a bipartite graph drawn on T2. A bipartite graph is a graph consisting

of vertices of two colors, say, white and black, and all links connect two vertices with

different colors. Tilings have been used to describe four-dimensional N = 1 quiver gauge

theories and the structure of their moduli spaces. The gauge group, the matter content,

and the superpotential of a gauge theory can be read off from the brane tiling for the theory.

Namely, faces correspond to U(N) factors in the gauge group, and links to bi-fundamental

fields. The superpotential can be also read off from the tiling in the way we will mention

later. These correspondences are naturally understood by regarding the tiling as a NS5-D5

system in type IIB string theory.

In this paper, we use tilings to describe three-dimensional N = 2 Chern-Simons the-

ories. The gauge group, the matter content, and the superpotential are read off from the

tiling in the same way as the four-dimensional case. These rules are naturally understood

by regarding the tiling as a D4-NS5 system in type IIA theory, rather than the type IIB
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Figure 1: The tiling for the ABJM model at level (k,−k). The arrow represents the flow s defined

in (2.2).

brane system. By this reason, when we want to specify which of three or four dimensional

theory a brane tiling describes, we call it IIB tiling (for four-dimensional theory), or IIA

tiling (for Chern-Simons theory). Figure 1 shows an example of IIA tiling for the ABJM

model.

Because we are here interested in the structure of the background spacetime probed by

M2-branes, we discuss only abelian (N = 1) case. We use indices I, J, . . . for links, i, j, . . .

for faces, and a, b, . . . for vertices. Let U(1)i be the gauge group associated with face i,

and ΦI be the bi-fundamental field associated with link I. I ∈ i means the link I is on

the face i. The bi-fundamental field ΦI is charged under two U(1) factors corresponding to

the two faces sharing the link. The U(1)i charge QIi of the chiral multiplet ΦI is uniquely

determined by the bipartite graph. When the link I is not a side of the face i, QIi = 0.

QIi is +1 (−1) if the left endpoint of the link I is black (white) when it is seen from the

face i.

In order to specify a Chern-Simons theory, we need to fix the levels ki ∈ Z for each

gauge group as numbers assigned to faces in a IIA tiling. As is pointed out in [22], we need

to impose the condition
∑

i

ki = 0, (2.1)

to obtain a four-dimensional moduli space. Because of this condition we can represent the

levels ki as

ki =
∑

I

QIisI . (2.2)

In order to interpret relations like (2.2) geometrically, we define two kinds of flows on

the tiling. Let fI be a set of numbers assigned to links. A normal flow f is a flow from faces

to faces. We define the orientation of the flow to be the anti-clockwise direction around

black vertices. ((a) in figure 2) The other flow associated with fI is the tangential flow f∗,

which describes flow along links from black vertices to white ones. ((b) in figure 2) We can

rewrite the relation (2.2) in terms of the normal flow s or the tangential flow s∗ as

{ki} = div s = rot s∗. (2.3)

We will later see that this relation has natural interpretation in the context of brane

realization of Chern-Simons theories.

For later convenience, we introduce the following normal flows. (See figure 3.)
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Figure 2: For a set of numbers fI assigned to links we define two flows. (a) is a normal flow f

and (b) is a tangential flow f∗. These two flows are related by the π/2 rotation of arrows.

Figure 3: Examples of cycles α, β and γa for the ABJM tiling are shown.

• α: a unit flow along α-cycle on the torus.

• β: a unit flow along β-cycle on the torus.

• γa: a unit flow around vertex a. The orientation is anti-clockwise (clockwise) around

black (white) vertices.

An arbitrary conserved flow can be given as a linear combination of these flows. We define

an operator Of for a normal flux f with non-negative integral components fI by

Of =
∏

I

ΦfI

I . (2.4)

If f is conserved flow satisfying div f = 0, the operator is also defined for general N

as a single or multiple trace operator, which is often called mesonic operators. Baryonic

operators are associated with non-conserved flows. With this notation, the superpotential

is represented as

W =
∑

a

±Oγa
, (2.5)

where the signature of the summand is positive (negative) for black (white) vertices.

3. Gauge symmetries

In both three- and four-dimensional cases, the moduli space is defined as the coset X/G,

where X is the manifold defined by the F-term conditions and G is the complexified gauge

group. Because IIA and IIB tilings give the same F-term conditions, the manifold X is
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common to two cases. A difference arises in the gauge symmetry G. In this section we

review how this difference arises following [22].

If the tiling has n faces, there are n U(1) factors. Among them, the diagonal U(1)

decouples from matter fields, and the effective gauge symmetry is U(1)n−1. The complex-

ification of this symmetry gives G in the IIB case. In the IIA case, however, it is known

that U(1)n−1 is broken down to U(1)n−2 due to the existence of the Chern-Simons terms.

Let Ai be the U(1)i gauge field. We define gauge fields

a =

n
∑

i=1

Ai, b =

n
∑

i=1

kiAi. (3.1)

Let ck (k = 1, . . . , n− 2) be linear comminations of Ai linearly independent of a and b. We

can rewrite the Chern-Simons terms in the form

SCS =
1

2πn

∫

b ∧ f + S′[b, ck] (3.2)

where f = da and S′ does not depend on the diagonal U(1) gauge field a. Because the

gauge field a does not couple to matter fields, it appears only in the first term of (3.2). The

action includes a only through f , and we can dualize it by introducing Lagrange multiplier

τ and adding the following term to the action.

Sτ = −
1

2π

∫

dτ ∧ f. (3.3)

The equation of motion for f is

dτ =
1

n
b. (3.4)

Let us consider gauge transformation

Ai → Ai + dθi. (3.5)

The relation (3.4) implies that the dual scalar field τ should be transformed under (3.5) by

δτ =
1

n

n
∑

i=1

kiθi. (3.6)

This non-linear gauge transformation of τ means that the gauge symmetry is always par-

tially broken due to the vev of the scalar field τ . As is shown in [22] the period of τ is

2π/n, and the parameters for unbroken gauge transformations should satisfy

2πZ ∋
n
∑

i=1

kiθi =
∑

I,i

QIisIθi, (3.7)

where we used (2.2) to obtain the final expression.
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4. Gauge invariant operators

When we analyze the moduli space of a gauge theory, it is convenient to use gauge invariant

operators as coordinates of the moduli space. In four-dimensional gauge theories described

by IIB brane tiling, it is known that the moduli space is parameterized by three gauge

invariant operators

Mα = Oα, Mβ = Oβ, W = Oγa
, (4.1)

associated with the flows defined in section 2. For general N , these operators are defined

as single-trace mesonic operators. W is one of the terms in the superpotential (2.5). Due

to the F -term conditions, all terms in the superpotential have the same vev, and W as an

element of the chiral ring does not depend on the choice of the vertex a. Because α, β,

and γa generate arbitrary conserved flows, an arbitrary mesonic operator can be written

as a function of these mesonic operators, and we can use these three as coordinates in the

three-dimensional moduli space of four-dimensional gauge theory.

In the case of Chern-Simons theory, (4.1) are again gauge invariant operators, and we

can use them as coordinates in the moduli space. However, we need another gauge invariant

operator to parameterize the four-dimensional moduli space. Indeed, the restriction (3.7)

of the gauge transformation parameters admits extra gauge invariant operators in addition

to the mesonic operators in the four-dimensional gauge theory.

Let us consider an operator Oq associated with a flow q, which is not necessarily

conserved. The field ΦI associated with link I is transformed under the gauge transforma-

tion (3.5) as

ΦI → exp

(

i
∑

i

QIiθi

)

ΦI , (4.2)

and the gauge transformation of the operator Oq is

Oq → exp



i
∑

I,i

QIiqIθi



Oq. (4.3)

For the operator to be gauge invariant, the components qI of the flow must satisfy

2πZ ∋
∑

I,i

QIiqIθi. (4.4)

If this condition were imposed for arbitrary θi, solutions would be given by qI = cI where

cI is an arbitrary flow satisfying
∑

I

QIicI = 0 ∀ i. (4.5)

This is equivalent to div c = 0, and the normal flow c is conserved. Solutions in this form

correspond to mesonic operators generated by (4.1).

The parameters θi are, however, constrained by (3.7) in the Chern-Simons theory.

Thus we have an extra solution qI = sI , and a general solution is given by

qI = msI + cI , (4.6)
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where m is an arbitrary integer and cI is a conserved flow satisfying (4.5). Therefore, as

the fourth coordinate on the moduli space, we should introduce the following baryonic

operator associated with s.

B = O[s] =
∏

I

ΦsI

I . (4.7)

An arbitrary gauge invariant operator in the Chern-Simons theory is given as a function

of the four operators

Mα, Mβ, B, W. (4.8)

5. Toric data

In this section, we give a simple prescription to obtain toric data of the moduli space of

Chern-Simons theory from the IIA brane tiling for the theory. The same subject is also

investigated in [32].

In general a toric Calabi-Yau n-fold is represented as a Tn fibration over an n-

dimensional polyhedral cone C. The boundary of C consists of (n − 1)-fans. On each

(n− 1)-fan a cycle v in the toric fiber shrinks. In other words, the fan is the fixed subman-

ifold of the U(1) isometry generated by the vector v. For each (n−1)-fan, there is a vector

v representing the shrinking cycle, and the toric data is given as a set of such vectors.

In order to extract the toric data of the moduli space from the information of a gauge

theory, it is convenient to translate the system into a gauged linear sigma model (GLSM).

This is achieved by solving the F-term conditions with the help of perfect matchings.

A perfect matching is a number assignment µI to links in a tiling which satisfies the

following conditions.

• µI = 0 or 1 for any link I.

• Among links ending on a vertex a, only one has non-vanishing fI .

The following equation follows from these two conditions.

〈γa,µ
∗〉 ≡

∑

I∈a

fI = 1 ∀a, (5.1)

µ∗ is the tangential flow associated with the number assignment µI , and the product 〈∗, ∗〉

is the intersection of a normal flow and a tangential flow, which is defined by

〈f ,g∗〉 =
∑

I

fIgI . (5.2)

Figure 4 shows the four perfect matchings of the ABJM tiling.

The F-term conditions require all the terms Oγa
in the superpotential are the same.

We can solve this condition by [33]

ΦI =
∏

µ∋I

ρµ, (5.3)
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Figure 4: The four perfect matchings of the ABJM tiling.

where ρµ is a GLSM field defined for each perfect matching µ, and the summation is taken

over all the perfect matchings with µI = 1. Substituting this into the definition of Oγa

and using (5.1), we can show that Oγa
is the product of all the GLSM fields regardless

of the index a, and the F -term conditions are therefore satisfied by (5.3). Because this

expression is redundant, we need to extend the gauge symmetry G acting on ΦI by adding

U(1) rotations of GLSM fields which keep ΦI invariant. Let G′ be this extended gauge

symmetry. If the number of the perfect matchings is npm and the space spanned by the

GLSM fields is Cnpm, the moduli space of the gauge theory is the coset Cnpm/G′.

In order to obtain the toric data, we need to find U(1) symmetries which have non-

trivial fixed submanifolds. It is easy to show that in the moduli space defined as the coset

Cnpm/G′, such a submanifold is given as the image of the fixed plane ρµ = 0 of U(1)µ
symmetry by the homomorphism Cnpm → Cnpm/G′, where U(1)µ is the symmetry which

rotate only one GLSM field ρµ with charge 1. Thus, the components of the killing vector

vµ are given as the U(1)µ charges of the four toric coordinates.

As we mentioned above, we can use the four gauge invariant operators in (4.8) as

coordinates in the Calabi-Yau 4-fold, and then the four components of vµ are U(1)µ charges

of these operators. By substituting (5.3) into (2.4) we rewrite an operator Oq in terms of

GLSM fields as

Oq =
∏

I

∏

µ∋I

ρqI

µ =
∏

µ

ρ〈q,µ∗〉
µ , (5.4)

and thus, the U(1)µ charge [Oq]µ of the operator Oq is given by

[Oq]µ = 〈q,µ∗〉. (5.5)

Applying this formula to the four gauge invariant operators, we obtain the following com-

ponents of the killing vectors

vµ =











[Mα]µ
[Mβ ]µ
[B]µ
[W]µ











=











〈α,µ∗〉

〈β,µ∗〉

〈s,µ∗〉

1











(5.6)

The last components of these vectors are always 1, and this guarantees that the toric

manifold is Calabi-Yau. With this formula, we can easily obtain toric data from a given

IIA tiling.
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Figure 5: The toric diagram of the orbifold C4/Zk.

As a simple example, let us consider the ABJM tiling in figure 1. If we use the four

perfect matchings in figure 4, and flows s, α, β, and γa in figure 1 and 3, we obtain the

following four killing vectors.

v1 =











0

1

0

1











, v2 =











1

1

0

1











, v3 =











1

0

0

1











, v4 =











0

0

k

1











. (5.7)

By neglecting the fourth components of these vectors and plotting corresponding points

in the three-dimensional lattice, we obtain the toric diagram of the moduli space C4/Zk.

(figure 5)

6. Relation to crystals

A brane tiling describing a four-dimensional gauge theory can be regarded as a brane

systems consisting of D5-branes and NS5-branes, which is T-dual to D3-branes probing a

toric Calabi-Yau 3-fold, and the rules of reading off the gauge theory from the tiling have

natural interpretation in terms of this brane system. For example, faces in a brane tiling

represent D5-branes in the brane system, and the U(N) factors in the gauge group are

identified with the gauge groups realized on the D5-branes.

Brane crystals [29 – 31] are analogues of brane tilings for M2-branes probing four-

dimensional toric CY cones. By T-duality transformation in M-theory, a system of M2-

branes probing a four-dimensional toric Calabi-Yau cone is transformed into a brane system

consisting of M5-branes. Brane crystals are bipartite graphs in T3 representing the struc-

ture of the M5-brane systems [29].

Contrary to the case of brane tilings for four-dimensional gauge theories, we can obtain

much less information from this brane system. This is because we have only little knowledge

about theories realized on M5-brane systems. The purpose of this section is to obtain some

information about the relation between Chern-Simons theories and brane crystals by using

the results obtained in the previous sections.

The method to obtain toric data from crystals has been already known [30]. Actually,

we may define brane crystals as bipartite graphs in T3 which give toric data of Calabi-Yau

4-folds in a similar way as brane tilings. The method to obtain the toric diagram from a

– 9 –
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Figure 6: 2-cycles used to extract toric data from a crystal are shown. These are expected to

represent M2-branes corresponding to gauge invariant operators [29, 30].

brane crystal is as follows: First, instead of the α and β cycles in brane tilings, we define

three closed 2-cycles A (1-3 plane), B (2-3 plane), and S (1-2 plane). (See figure 6.) We

assume these do not include vertices of the crystal on them. We also define a cycle Ga

for each vertex a, which is a sphere enclosing the vertex a. (See figure 6.) Because the

crystal is bipartite as well as tilings, we can define perfect matchings on it. If we denote

the intersection number of a 2-cycle C and a perfect matching µ by [C,µ], the vectors vµ

forming the toric diagram are given by

vµ =











[A,µ]

[B,µ]

[S, µ]

[Ga, µ]











. (6.1)

By definition, the last component [Ga, µ] is always 1, and the Calabi-Yau condition is

satisfied.

When a IIA tiling is given, it is easy to construct a brane crystal which gives the same

toric data by the formula (6.1) as the data obtained by (5.6) from the IIA tiling. Let

(xa, ya) be the coordinates of the vertex a in the IIA tiling. We put the corresponding

vertex in the crystal at the point (xa, ya, 0) in the three-dimensional torus. We make the

three-dimensional graph by connecting these vertices in the same way as the tiling. Namely,

if vertices a and b in the tiling are connected by a link, we connect the corresponding points

in T3 by a link, too. There are infinitely many ways of connecting two vertices in T3 with

a link with different winding numbers. We fix this ambiguity by requiring the following

two conditions.

• The crystal reduces to the original tiling by the projection along the vertical axis.

• The vertical winding number of link I is sI .

In other words, we interpret the integers sI assigned to links as the gradient of links in the

three-dimensional space. See figure 7 for an example of the ABJM model with k = 2. As

the result, we obtain a three-dimensional bipartite graph with the same number of vertices

and links as the original brane tiling (figure 7).

Let us confirm that the crystal constructed in this way correctly reproduces the toric

data (5.6) obtained in the previous section. First of all, the two-dimensional and three-

dimensional graphs are differ only by their embeddings to the tori. The former is embedded
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Figure 7: A crystal for ABJM model with k = 2 is shown. This figure includes two fundamental

regions.

in T2 and the latter is in T3. Therefore, the three-dimensional graph has the same perfect

matchings as the two-dimensional one.

Let us first consider the first two components 〈α,µ∗〉 and 〈β,µ∗〉 in (5.6). We define

the three-dimensional lift of α and β cycles by

A = α ⊗ S1, B = β ⊗ S1, (6.2)

where S1 here is the cycle along the vertical direction. We use these 2-cycles as A and B

in the formula (6.1). Then it is obvious that the first two components of (5.6) and those

in (6.1) are the same.

〈α,µ∗〉 = [A,µ], 〈β,µ∗〉 = [B,µ]. (6.3)

For the last components, we define 2-cycle γa ⊗ S1 for each vertex a. These are

homologous to Ga defined above, and the relation

〈γa,µ
∗〉 = [Ga, µ] (6.4)

holds. (Actually, this is by definition always 1.)

Finally, let us consider the third component in (5.6), which is given as the U(1)µ
charge of the baryonic operator B. In the brane tiling, the baryonic operator is expressed

in different way from the other mesonic operators. Mesonic operators are associated with

conserved flows on the tiling, while the flow s corresponding to the baryonic operator B is

not conserved. In the crystal, however, the third component is also given as the intersection

of closed 2-cycle and perfect matchings. As we mentioned above, the link I in the crystal

has the vertical winding sI , and it intersects sI times with the 2-cycle S. Therefore, the

intersection 〈s,µ∗〉 can be rewritten as the intersection of the closed 2-cycle S and the

perfect matching µ.

〈s,µ∗〉 = [S, µ]. (6.5)

Thus, the third components of (5.6) and (6.1) are the same.

Now we have confirmed that the crystal constructed above correctly reproduces the

toric data of the moduli space of the Chern-Simons theory described by the tiling. At the

same time, we have established the correspondence between the gauge invariant operators
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in (4.8) and closed 2-cycles in the crystal. Because the set of operators in (4.1) and (4.7)

generates arbitrary gauge invariant operators, we have established the complete map be-

tween gauge invariant operators including both mesonic and baryonic ones and closed

2-cycle in the crystal, which are interpreted as closed M2-branes [29, 30]. An interesting

feature of this correspondence is that even though in the Chern-Simons theory baryonic

operators and mesonic operators have different structure, the brane crystal describes these

in the parallel way.

As another support to our prescription, we can show that the level kI are naturally

obtained from the brane system described by the crystal. In order to read off the Chern-

Simons theory from a crystal, we need to project the crystal along the vertical direction, and

go back to the tiling. From the viewpoint of brane system, we can interpret this projection

as the compactification of M-theory to type IIA string theory. Then, links and faces in the

tiling are interpreted as a network of NS5-brane and D4-branes ending on the NS5-brane,

respectively. Gauge groups are realized on the D4-branes, and the Chern-Simons terms are

induced from the following boundary term in the D4-brane action.

S =
1

4π

∫

∂D4

A ∧ dA ∧ dφ, (6.6)

where A is the gauge field on the D4-brane and φ is the compact scalar field on the NS5-

brane corresponding to the X11 coordinate in the M-theory picture. If the scalar field φ

has non-trivial profile along the boundary of the D4-brane, this induces the Chern-Simons

coupling in the three-dimensional gauge theory, and the level is given by

ki =

∮

dφ, (6.7)

where the integration is taken over the boundary of the face i. If we identify dφ as the

gradient sI along links, (6.7) is nothing but the relation (2.2), or, equivalently, (2.3).

7. Conclusions

In this paper we investigated the relation between brane tilings describing N = 2 Chern-

Simons theories and the toric data of their moduli spaces. We gave a simple procedure to

read off the toric data of the moduli space from the brane tiling. In order to obtain the

toric data, we should first represent the Chern-Simons levels as a flow s on the tiling, and

the vectors vµ forming the toric diagram are obtained as the intersection of the perfect

matchings µ∗ and the flows (α,β, s).

IIA brane tilings, which are regarded as brane systems consisting of D4-branes and

NS5-branes, can be regarded as the projection of the crystals, which describe M5-brane

systems. We showed that we can lift a IIA tiling to the corresponding crystal by using the

flow s∗ as the gradient of links. We found that gauge invariant operators, which include

both mesonic and baryonic ones, are represented in the crystal as closed 2-cycles.

We emphasize that although our prescription always gives a crystal for a given IIA

tiling, it is not always possible to give a tiling which reproduce a given crystal. Our
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prescription does not guarantee the existence of a Chern-Simons theory which reproduces

a given toric Calabi-Yau 4-fold as its moduli space. There may not exist corresponding

Chern-Simons theories for a class of manifolds. Contrary, there are crystals which gives

more than two tilings by the projection along different directions. This may suggest the

duality among Chern-Simons theories. We wish to come back to these issues in near future.
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